Search results for "Optimal trajectory"
showing 5 items of 5 documents
Optimal Starting Conditions for the Rendezvous Maneuver, Part 2: Mathematical Programming Approach
2008
In a companion paper (Part 1, J. Optim. Theory Appl. 137(3), [2008]), we determined the optimal starting conditions for the rendezvous maneuver using an optimal control approach. In this paper, we study the same problem with a mathematical programming approach.
Optimal control of the Schrödinger equation with two or three levels
2007
In this paper, we present how techniques of “control theory”, “sub-Riemannian geometry” and “singular Riemannian geometry” can be applied to some classical problems of quantum mechanics and yield improvements to some previous results.
Time optimal control of a satellite with two rotors
2001
International audience; The aim of this work is to investigate the structure of time-optimal trajectories for a control system modelizing a satellite with two rotors attached along its two fixed axes. Our results extend to the general case those obtained by Sussmann and Tang in an unpublished paper where they treat a particular case described below. We end up finding a sufficient family of four parameters trajectory types. The main tools used are the Pontryagin Maximum Principle, switching functions and envelope theory. © 2001 EUCA.
Optimal Control Under Fuzzy Conditions for Dynamical Systems Associated with the Second Order Linear Differential Equations
2020
This paper is devoted to an optimal trajectory planning problem with uncertainty in location conditions considered as a problem of constrained optimal control for dynamical systems. Fuzzy numbers are used to incorporate uncertainty of constraints into the classical setting of the problem under consideration. The proposed approach applied to dynamical systems associated with the second order linear differential equations allows to find an optimal control law at each \(\alpha \)-level using spline-based methods developed in the framework of the theory of splines in convex sets. The solution technique is illustrated by numerical examples.
Time-optimal control of SU(2) quantum operations
2013
We propose an analysis of the time-optimal control of SU(2) quantum operations. By using the Pontryagin Maximum Principle, we show how to determine the optimal trajectory reaching a given target state. Explicit analytical solutions are given for two specific examples. We discuss the role of the detuning in the construction of the optimal synthesis.